Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Common Vulnerability Considerations as an Integral Part of the Automotive Cybersecurity Engineering Process

2022-10-05
2022-28-0304
To build secure systems of road vehicles, the cybersecurity engineering standard ISO21434[11] suggests the evaluation of vulnerabilities throughout engineering process, such as attack path analysis, system requirement stage, software architecture, design, and implementation and testing phases. ...With my analysis and practices, it is appropriate to include the common vulnerabilities that ought to be an integral part of the automotive cybersecurity engineering process. In this paper, the author would like to provide a list of vulnerabilities that might be a suggestion for threat analysis and risk assessment and propose two solutions that may be adopted directly in the V-model for security-relevant software development.
Research Report

Legal Issues Facing Automated Vehicles, Facial Recognition, and Privacy Rights

2022-07-28
EPR2022016
Facial recognition software (FRS) is a form of biometric security that detects a face, analyzes it, converts it to data, and then matches it with images in a database. This technology is currently being used in vehicles for safety and convenience features, such as detecting driver fatigue, ensuring ride share drivers are wearing a face covering, or unlocking the vehicle. Public transportation hubs can also use FRS to identify missing persons, intercept domestic terrorism, deter theft, and achieve other security initiatives. However, biometric data is sensitive and there are numerous remaining questions about how to implement and regulate FRS in a way that maximizes its safety and security potential while simultaneously ensuring individual’s right to privacy, data security, and technology-based equality.
Technical Paper

Medical Cargo Delivery using Blockchain Enabled Unmanned Aircraft Systems

2022-05-26
2022-26-0003
Significant growth of Unmanned Aerial Vehicles (UAV) has unlocked many services and applications opportunities in the healthcare sector. Aerial transportation of medical cargo delivery can be an effective and alternative way to ground-based transport systems in times of emergency. To improve the security and the trust of such aerial transportation systems, Blockchain can be used as a potential technology to manage, operate and monitor the entire process. In this paper, we present a blockchain network solution based on Ethereum for the transportation of medical cargo such as blood, medicines, vaccines, etc. The smart contract solution developed in solidity language was tested using the Truffle program. Ganache blockchain test network was employed to host the blockchain network and test the operation of the proposed blockchain model. The suitability of the model is validated in real-time using a UAV and all the flight data are captured and uploaded into the blockchain.
Technical Paper

Robustness Testing of a Watermarking CAN Transceiver

2022-03-29
2022-01-0106
To help address the issue of message authentication on the Controller Area Network (CAN) bus, researchers at Virginia Tech and Ford Motor Company have developed a proof-of-concept time-evolving watermark-based authentication mechanism that offers robust, cryptographically controlled confirmation of a CAN message's authenticity. This watermark is injected as a common-mode signal on both CAN-HI and CAN-LO bus voltages and has been proven using a low-cost software-defined radio (SDR) testbed. This paper extends prior analysis on the design and proof-of-concept to consider robustness testing over the range of voltages, both steady state drifts and transients, as are commonly witnessed within a vehicle. Overall performance results, along with a dynamic watermark amplitude control, validate the concept as being a practical near-term approach at improving authentication confidence of messages on the CAN bus.
Technical Paper

Integrating Fuzz Testing into a CI Pipeline for Automotive Systems

2022-03-29
2022-01-0117
With the rapid development of connected and autonomous vehicles, more sophisticated automotive systems running large portions of software and implementing a variety of communication interfaces are being developed. The ever-expanding codebase increases the risk for software vulnerabilities, while at the same time the large number of communication interfaces make the systems more susceptible to be targeted by attackers. As such, it is of utmost importance for automotive organizations to identify potential vulnerabilities early and continuously in the development lifecycle in an automated manner. In this paper, we suggest a practical approach for integrating fuzz testing into a Continuous Integration (CI) pipeline for automotive systems. As a first step, we have performed a Threat Analysis and Risk Assessment (TARA) of a general E/E architecture to identify high-risk interfaces and functions.
Technical Paper

Mechanism for Runtime Kernel Integrity Check without Additional IP and without TEE for Low/Mid Automotive Segments

2022-03-29
2022-01-0126
Vehicles have more connectivity options now-a-days and these increasing connection options are giving more chances for an intruder to exploit the system. So, the vehicle manufacturers need to make the ECU in the vehicle more secure. To make the system secure, the embedded system must secure all the assets in the system. Examples of assets are Software, Kernel or Operating system, cryptographic Keys, Passwords, user data, etc. In this, securing the Kernel is extremely important as an intruder can even exploit the operating system characteristics just by changing the kernel code without introducing a trojan in the system. Also, the Kernel is the one entity that manages all permissions, so, if the kernel is hacked, these permissions also get compromised. The proposed approach is to make the kernel secure by doing the integrity check periodically of the kernel code loaded into the main memory of the system.
Technical Paper

Requirements for the Automated Generation of Attack Trees to Support Automotive Cybersecurity Assurance

2022-03-29
2022-01-0124
Although ISO/SAE 21434 recommends the development of an assurance case for cybersecurity, the precise nature of a cybersecurity case is not explicitly defined within the standard. ...In the case of cybersecurity, this problem is exacerbated by the increasing complexity of vehicular onboard systems, their inherent obscurity due to their heterogenous architecture, emergent behaviors, and the disparate motivations and resources of potential threat agents.
Technical Paper

Applying Blockchain to Vehicle Cybersecurity: Nuance to the Standard Application

2022-03-29
2022-01-0368
In adjusting the data flow, this is an option to increase the cybersecurity for a complete system. This addition to the cybersecurity system provides a clear benefit. ...While this is the traditional application experienced, there are other applications relevant to cybersecurity. As part of the blockchain technology, the nodes are responsible for decision-making.
Technical Paper

Attacking Ground Vehicles with Ransomware: Watch the Horizon

2022-03-29
2022-01-0358
Ransomware is not a new method of malware infection. This historically had been experienced in the enterprise in nearly every industry. This has been especially problematic in the medical and manufacturing fields. As the attackers saturate the specifically targeted industries, the attackers will expand their target industries. One of these which has not been significantly explored by the ransomware groups are the embedded systems and automobile environment. This set of targets is massive and provides for a vast attack potential. While this has not experienced this attack methodology at length, the research and efforts are creeping towards this as a natural extension of the business. The research focusses on the history of ransomware, uses in the enterprise, possible attack vectors with ground vehicles, and defenses to be explored and implemented to secure automobiles, fleets, and the industries.
Technical Paper

Functional Verification and Validation of Secure Controller Area Network (CAN) Communication

2022-03-29
2022-01-0110
In agriculture industry, increasing use of Vehicle Internet of Things (IoT), telematics and emerging technologies are resulting in smarter machines with connected solutions. Inter and Intra Communication with vehicle to vehicle and inside vehicle - Electronic Control Unit (ECU) to ECU or ECU (Electronic Control Unit) to sensor, requirement for flow of data increased in-turn resulting in increased need for secure communication. In this paper, we focus on functional verification and validation of secure Controller Area Network (CAN) for intra vehicular communication to establish confidentiality, integrity, authenticity, and freshness of data, supporting safety, advanced automation, protection of sensitive data and IP (Intellectual Property) protection. Network security algorithms and software security processes are the layers supporting to achieve our cause.
Technical Paper

Future of Automotive Embedded Hardware Trust Anchors (AEHTA)

2022-03-29
2022-01-0122
In conjunction with an increasing number of related laws and regulations (such as UNECE R155 and ISO 21434), these drive security requirements in different domains and areas. 2 In this paper we examine the upcoming trends in EE architectures and investigate the underlying cyber-security threats and corresponding security requirements that lead to potential requirements for “Automotive Embedded Hardware Trust Anchors” (AEHTA).
Technical Paper

Strategy to Adopt ISO/SAE 21434 Cyber Security Assurance Level in the Organization

2022-03-29
2022-01-0121
The recent standard, ISO/SAE 21434, is introduced to address the cybersecurity requirements for the development of electrical and electronic components in the road vehicles. ...This standard has introduced a new classification scheme, cybersecurity assurance level (CAL), that helps in validating the process rigor needed for mitigating different threat scenarios. ...CAL values can be determined at the earlier stages of the SDLC (cybersecurity concept phase) through the knowledge of attack vectors and attack severity specific to a system.
Technical Paper

Managing Trust Along the CAN Bus

2022-03-29
2022-01-0119
Multiple approaches have been created to enhance intra-vehicle communications security over the past three decades since the introduction of the Controller Area Network (CAN) protocol. The twin pair differential-mode communications bus is tremendously robust in the face of interference, yet physical access to the bus offers a variety of potential attack vectors whereby false messages and/or denial of service are achievable. This paper evaluates extensions of a Physical-layer (PHY) common-mode watermark-based authentication technique recently developed to improve authentication on the CAN bus by considering the watermark as a side-channel communications means for high value information. We also propose and analyze higher layer algorithms, with benefits and pitfalls, for employing the watermark as a physical-layer firewall.
Technical Paper

UDS Security Access for Constrained ECUs

2022-03-29
2022-01-0132
Legacy electronic control units are, nowadays, required to implement cybersecurity measures, but they often do not have all the elements that are necessary to realize industry-standard cybersecurity controls. ...Legacy electronic control units are, nowadays, required to implement cybersecurity measures, but they often do not have all the elements that are necessary to realize industry-standard cybersecurity controls. For example, they may not have hardware cryptographic accelerators, segregated areas of memory for storing keys, or one-time programmable memory areas. ...While the UDS service $27 (Security Access) has a reputation for poor cybersecurity, there is nothing inherent in the way it operates which prevents a secure access-control from being implemented.
Research Report

Unsettled Issues in Remote Operation for On-road Driving Automation

2021-12-15
EPR2021028
On-road vehicles equipped with driving automation features—where a human might not be needed for operation on-board—are entering the mainstream public space. However, questions like “How safe is safe enough?” and “What to do if the system fails?” persist. This is where remote operation comes in, which is an additional layer to the automated driving system where a human remotely assists the so-called “driverless” vehicle in certain situations. Such remote-operation solutions introduce additional challenges and potential risks as the entire vehicle-network-human now needs to work together safely, effectively, and practically. Unsettled Issues in Remote Operation for On-road Driving Automation highlights technical questions (e.g., network latency, bandwidth, cyber security) and human aspects (e.g., workload, attentiveness, situational awareness) of remote operation and introduces evolving solutions.
Technical Paper

Connected Vehicles - A Testing Approach and Methodology

2021-09-22
2021-26-0450
With the introduction of Connected Vehicles, it is possible to extend the limited horizon of vehicles on the road by collective perceptions, where vehicles periodically share their information with other vehicles and servers using cloud. Nevertheless, by the time the connected vehicle spread expands, it is critical to understand the validation techniques which can be used to ensure a flawless transfer of data and connectivity. Connected vehicles are mainly characterized by the smartphone application which is provided to the end customers to access the connectivity features in the vehicle. The end result which is delivered to the customer is through the integrated telematics unit in the vehicle which communicates through a communication layer with the cloud platform. The cloud server in turn interacts with the final application layer of the mobile application given to the customer.
Technical Paper

Reliability-Oriented Distributed Test Strategy for FOTA/SOTA Enabled Edge Device

2021-09-22
2021-26-0476
In order to enhance customer experience [5] and to reduce time to market, the manufacturers are constantly in need of being able to update software/firmware of the Electronic Control units (ECU) when the vehicle is in field operations. The updates could be a bug fix or a new feature release. Until the recent years, the updation of software/firmware used to be done using a physical hardwired connection to the Vehicle in a workshop. However, with the element of connectivity being added to the vehicle, the updation of software can be done remotely and wirelessly over the air using a feature called Flash over the air (FOTA) [2] and Software over the air (SOTA) [2]. In order to safeguard the telematics [3] ECU from tampering or hacking, the manufacturers are doing away with the ports on the underlying hardware through which manual flashing used to be done. This means that, the only option available to flash or update the ECU is using FOTA/SOTA.
Technical Paper

Onboard Cybersecurity Diagnostic System for Connected Vehicles

2021-09-21
2021-01-1249
Here, we discuss the On-Board Diagnostic (OBD) regulations for next generation BEV/HEV, its vulnerabilities and cybersecurity threats that come with hacking. We propose three cybersecurity attack detection and defense methods: Cyber-Attack detection algorithm, Time-Based CAN Intrusion Detection Method and, Feistel Cipher Block Method. ...These control methods autonomously diagnose a cybersecurity problem in a vehicle’s onboard system using an OBD interface, such as OBD-II when a fault caused by a cyberattack is detected, All of this is achieved in an internal communication network structure.
Research Report

Unsettled Legal Issues Facing Data in Autonomous, Connected, Electric, and Shared Vehicles

2021-09-13
EPR2021019
Modern automobiles collect around 25 gigabytes of data per hour and autonomous vehicles are expected to generate more than 100 times that number. In comparison, the Apollo Guidance Computer assisting in the moon launches had only a 32-kilobtye hard disk. Without question, the breadth of in-vehicle data has opened new possibilities and challenges. The potential for accessing this data has led many entrepreneurs to claim that data is more valuable than even the vehicle itself. These intrepid data-miners seek to explore business opportunities in predictive maintenance, pay-as-you-drive features, and infrastructure services. Yet, the use of data comes with inherent challenges: accessibility, ownership, security, and privacy. Unsettled Legal Issues Facing Data in Autonomous, Connected, Electric, and Shared Vehicles examines some of the pressing questions on the minds of both industry and consumers. Who owns the data and how can it be used?
X